niedziela, 2 grudnia 2018

Globalne ocieplenie, topniejące lodowce i podlodowe wulkany - wywiad z glacjologiem Jakubem Małeckim

3 grudnia 2018 roku w Katowicach rozpocznie się Konferencja Narodów Zjednoczonych w sprawie zmian klimatu COP-24, która potrwa do 14 września. Niestety z powodu pracy nie będę w stanie uczestniczyć choćby w niewielkim stopniu w tych obradach, ale na pewno będę śledził jakie decyzje na COP-24 zapadną. Antropogeniczne globalne ocieplenie staje się coraz bardziej palącym problemem dla ludzkości, zatem chciałem koniecznie nawiązać do tego ważkiego zagadnienia w niniejszym wywiadzie. Tym razem wypytuję glacjologa Jakuba Małeckiego, który prowadzi świetny blog popularyzujący wiedzę o lodowcach Glacjoblogia.

https://glacjoblogia.wordpress.com/

Kiedy i w jakich okolicznościach zainteresowałeś się glacjologią? Co jest najbardziej fascynującego w lodowcach? Dlaczego są tak ważne dla badaczy polarnych?

Jako dziecko chciałem zostać astronautą i wylądować na Marsie. Nieco później zamarzyłem o karierze bardziej naukowej, niż eksploracyjnej, więc przerzuciłem się na astronomię. W szkole średniej natomiast stwierdziłem, że nasza planeta jest najciekawszym miejscem w całym nam znanym Wszechświecie, i że to ją muszę dokładnie poznać w pierwszej kolejności, aby móc zrozumieć pozostałe planety. Po maturze rozpocząłem więc studia geograficzne na Uniwersytecie im. Adama Mickiewicza w Poznaniu (UAM).

Na studiach dowiedziałem się, że badacze UAM wyjeżdżają na wyprawy naukowe na arktyczny Spitsbergen, wyspę leżącą w archipelagu Svalbard pomiędzy Norwegią i biegunem północnym. Do głosu doszło wtedy moje dziecięce marzenie o Marsie. W 2007 roku zostałem najmłodszym członkiem ekspedycji UAM na Svalbard i oto piekłem dwie pieczenie na jednym ruszcie: od tego momentu byłem badaczem powierzchni Ziemi, ale w marsjańskim krajobrazie Spitsbergenu. Jeszcze przed wyjazdem do Arktyki najbardziej zainteresowały mnie lodowce, bo były najbardziej nieziemskim elementem polarnego krajobrazu. Znałem je tylko z książek, ale nie zawiodłem się. Pierwsze wejście na lodowiec było magicznym przeżyciem, to była miłość od pierwszego wejrzenia.

Lodowce mnie zafascynowały, bo są tajemnicze i piękne. Są trochę jak żywe istoty, poruszają się, rosną, starzeją i wykazują swoje indywidualne zachowania i osobliwości, jakby miały własny charakter. Rola lodu w przyrodzie jest nie do przecenienia, a mimo to jest w życiu codziennym niedostrzegana. Lód i śnieg w znacznym stopniu sterują ilością pochłanianej przez Ziemię energii słonecznej, więc silnie wpływają na klimat, a wahania lodowców i lądolodów kontrolują globalny poziom morza.

Pracowałeś naukowo na Svalbardzie? Czym się tam zajmowałeś?

Na Svalbard przyjeżdżam każdego lata od 2007 roku. W środkowej części Spitsbergenu UAM posiada swoją stację polarną, w oparciu o którą prowadzimy obserwacje różnych elementów polarnego środowiska, w tym lodowców, ale też np. pogody, rzeźby terenu, rzek, wieloletniej zmarzliny, zanieczyszczeń czy tundry. Początkowo, jako student, prowadziłem proste pomiary położenia czół lodowców oraz mierzyłem ich profile podłużne odbiornikami GPS, aby określić jak zmiany klimatu wpływają na ich długość i grubość. Na studiach doktoranckich rozwinąłem program obserwacyjny i skupiłem się na lodowcu Sven – małym lodowcu dolinnym, który dobrze reprezentuje lodowce środkowego Spitsbergenu. W lodowcu tym zastabilizowaliśmy kilkanaście punktów pomiaru topnienia, stacje meteorologiczne, punkty pomiaru odpływu rzecznego i temperatury lodu. Do dziś, już jako pracownik uniwersytetu, kontynuuję te prace, aby po zebraniu długiej serii pomiarowej wyciągnąć wnioski o reakcji lodowca na ocieplenie klimatu, które na Spitsbergenie zachodzi bardzo szybko. Dotychczasowe wyniki sugerują, że lodowiec Sven i jego sąsiedzi nie przetrwają nawet, gdyby ocieplenie klimatu zatrzymało się choćby jutro.

Przydatne linki:

https://glacjoblogia.wordpress.com/artykuly/jak-nie-zabral-mnie-statek/

http://www.facebook.com/amups.svalbard

Czym się różnią lodowce antarktyczne od arktycznych? Czy istnieją jakieś wyraziste podziały lodowców na świecie?

Lodowce, podobnie jak np. jeziora czy wulkany, można klasyfikować pod względem ich różnych cech. Możemy je więc dzielić np. pod kątem kształtu, genezy czy temperatury. Trzeba jednak pamiętać, że wszelkie klasyfikacje są w pewnym sensie sztucznym uproszczeniem, mającym ułatwiać pracę badaczom i wyciąganie pewnych uogólnionych wniosków. W rzeczywistości, przyroda jest pewną ciągłością, kontinuum, więc granice pomiędzy różnymi klasami obiektów (np. lodowców, jezior, wulkanów, skał, chmur itp.) są często rozmyte. Z tego powodu, klasyfikacje stosowane w poszczególnych opracowaniach naukowych są raczej dobierane do indywidualnych potrzeb danego studium.

Glacjologia nie jest wyjątkiem od tej reguły i podziałów lodowców jest wiele. W najbardziej podstawowej klasyfikacji lodowce dzielimy pod względem ich kształtu, czyli geometrii, i stosunku do lokalnej rzeźby terenu. Wyróżniamy w niej wiele klas, np. lądolody i podobne do nich, choć znacznie mniejsze, czapy lodowe, które całkowicie przykrywają podścielające je podłoże skalne i tworzą lodowe kopuły spływające promieniście we wszystkich kierunkach. W obszarach, w których grubość lodu nie wystarcza, aby szczelnie zakryć cały teren, występują lodowce górskie (głównie dolinne i cyrkowe) lub ich całe, połączone ze sobą kompleksy – pola lodowe. Ta lista oczywiście nie jest wyczerpująca i chyba najpełniejszą z nich opisałem na moim blogu:

https://glacjoblogia.wordpress.com/2014/01/24/wgi_wstep/

Zarówno w Arktyce, jak i w Antarktyce, gdzie lodu jest najwięcej, dominują lądolody, odpowiednio Grenlandii i Antarktydy, ale także czapy i pola lodowe. Wszystkie te duże lodowe cielska wciskają swoje jęzory w obniżenia terenu i często docierają aż do samego morza, do którego odłamują się z hukiem mniejsze lub większe góry lodowe. To co różni natomiast lodowce obu stref podbiegunowych to po pierwsze rozmiary – lodowce południa (tj. Antarktyki) są generalnie znacznie większe i grubsze. Po drugie natomiast to temperatura lodu i konsekwencje z nią związane. Lód w Antarktyce jest zimniejszy od tego w Arktyce, a więc i mocniejszy. Dzięki temu, antarktyczny lodowiec po dotarciu do morza może często dalej się rozrastać, bo zaczyna pływać na morskiej wodzie bez przełamywania, tworząc tzw. lodowce szelfowe lub, poprawniej, półki lodowe. W zasadzie cały kontynent Antarktydy otoczony jest takimi platformami bardzo grubego, pływającego lodu i są to miejsca szczególnie narażone na negatywne konsekwencje ocieplenia klimatu.

Mamy mnóstwo dowodów iż lodowce na świecie topnieją wskutek antropogenicznego globalnego ocieplenia. Czy jesteśmy w stanie zminimalizować globalną utratę lodowców na świecie?

To prawda, nauka nie pozostawia żadnych wątpliwości: wzrost temperatury na świecie i przyspieszone topnienie lodowców są naszą winą! Jedynym sposobem złagodzenia skutków naszej działalności jest drastyczne ukrócenie emisji dwutlenku węgla do atmosfery, bo to jest właśnie pra-przyczyna negatywnych zmian klimatu. Niestety, świat nie dojrzał jeszcze do tej decyzji i emisje CO2 rosną. Przy zachowaniu tego trendu czeka nas globalny wzrost temperatury o kilka stopni Celsjusza, co może być wyrokiem śmierci nie tylko dla lodowców górskich, ale i dla lądolodów.

Istnieją także pomysły na ograniczenie ocieplenia klimatu poprzez sztuczną emisję aerozoli do atmosfery, które w zamyśle miałyby odbijać część energii słonecznej w kosmos jak maleńkie lusterka. Inna koncepcja widzi szanse na uratowanie lądolodów Grenlandii i Antarktydy przed destabilizacją poprzez podpieranie półek lodowych potężnymi podmorskimi wałami lub odpompowywanie spod nich wody, bo ta działa jak smar i przyspiesza spływ lodu do oceanu. Z moich obserwacji wynika, że środowisku naukowym przeważają zdania, że próby takie mogłyby wyrządzić więcej szkód niż pożytku i byłyby niezwykle kosztowne. Lepiej jest więc rozwiązywać problem u źródła i uciąć emisję dwutlenku węgla do atmosfery, m.in. opierając energetykę na odnawialnych źródłach energii.

Przydatny link:

https://glacjoblogia.wordpress.com/2018/04/03/antarktyda-i-grenlandia-topnieja-oto-jak-mozna-temu-zaradzic/

Jakie mogą być dalekosiężne konsekwencje topnienia masy lodowej Arktyki dla człowieka i przyrody?

W tym miejscu warto dokonać istotnego rozróżnienia. Arktyka jest wielkim oceanem, na którym znajdują się wyspy pokryte lodowcami, grubymi na dziesiątki, setki czy tysiące metrów. Sam Ocean Arktyczny także jest skuty lodem, ale jego kra (tzw. lód morski) jest cienka i ma zaledwie do kilku metrów grubości. W związku z tym, zasięg lodu morskiego zmienia się znacząco w rytmie pór roku, ale przez ostatnich 40 lat spadł o miliony kilometrów kwadratowych. Zanik lodu morskiego, przynajmniej w okresach letnich, jest możliwy już za kilka dekad. To bardzo zła informacja, ponieważ lód morski Arktyki kontroluje klimat półkuli północnej, m.in. nie pozwala mu się zbyt szybko nagrzewać i odgrywa ważną rolę w cyrkulacji wód oceanicznych.

Lód lądowy, czyli lodowce i lądolody, również szybko się kurczą, a skutki tego procesu są równie niebezpieczne. Przewidywania glacjologów, bazujące na obserwacjach współczesnych trendów i symulacjach dalszych zmian klimatu i topnienia lodu wskazują, że do końca XXI wieku znikną tysiące mniejszych lodowców na całym świecie, również w moim obszarze badań w środkowym Spitsbergenie. Zakładając scenariusz zmian stężenia CO2 w atmosferze "biznes-jak-zwykle", łączna objętość lodu spadnie w wielu obszarach górskich o kilkadziesiąt procent lub niemal całkowicie, m.in. w zachodniej Ameryce Północnej, wysokich górach Azji, a zapewne także w Europie. Lodowce stanowią w swoich regionach ważne źródło wody, które zostanie w ten sposób znacznie uszczuplone. Co jeszcze gorsze, topniejące lądolody Grenlandii i Antarktydy stały się niedawno głównym udziałowcem globalnego wzrostu poziomu morza, który do roku 2100 podniesie się o jakiś metr. Konsekwencją tego będą m.in. milionowe przesiedlenia i gigantyczne straty związane ze sztormowymi powodziami, które z każdym centymetrem wzrostu poziomu morza wdzierają się głębiej w ląd.

W jeszcze dłuższej perspektywie, wieków czy mileniów, spodziewamy się natomiast wielkiej redukcji objętości, lub nawet całkowitego zniknięcia, lądolodów Grenlandii i Antarktydy. Tych lodowych olbrzymów można porównać do mitycznego Achillesa – są potężni, ale mają swoje słabe punkty. Tymi słabymi punktami są kluczowe strumienie lodowe przemieszczające wielkie masy lodu aż do morza, na którym unoszą się ich półki lodowe. Pewna specyficzna konfiguracja kształtu półek i podłoża sprawia, że niektóre strumienie są bardzo wrażliwe na działanie wód morskich, które mogą szybko topić je od spodu. Po przekroczeniu krytycznego stanu doprowadzi to do "odkorkowania" strumieni i niekontrolowanego spływu lodu do oceanu. Już teraz obserwujemy pierwsze symptomy takiej destabilizacji kilku stref obu lądolodów, co może w przyszłości prowadzić do ich dynamicznego rozpadu. Zanik lądolodów trwałby zapewne setki lub tysiące lat, ale ich woda roztopowa podniosłaby poziom mórz o ponad 60 metrów, zabierając naszym potomkom gigantyczne połacie lądu, w tym żyzne i gęsto zaludnione niziny. Trzeba o tym mówić głośno i zdecydowanie, bo zmiany środowiska wymykają się spod kontroli, a furtka na działanie się szybko zamyka.

Przydatne linki:

https://glacjoblogia.wordpress.com/2016/07/03/serce-arktycznego-spitsbergenu-traci-lod-w-rekordowym-tempie/

https://glacjoblogia.wordpress.com/2015/10/03/niestabilnosc-ladolodow-morskich/

W jaki sposób dokonuje się pomiarów tempa topnienia/zaniku lodowców? Które metody są najbardziej niezawodne?

Glacjolodzy mają do wyboru wiele różnych technik pomiarowych, które podzielić można na trzy grupy: terenowe, zdalne i mieszane. Metody badań terenowych obejmują m.in. klasyczne pomiary tyczek zatopionych kilka metrów pod powierzchnią lodu w wielu punktach na lodowcu. Pomiar topnienia sprowadza się w tym przypadku do pomiaru długości części tyczki wystającej ponad powierzchnię i porównaniu bieżącego odczytu do tego z poprzedniej wizyty: pozorne wydłużenie tyczki oznacza topnienie, a skrócenie - gromadzenie nowego lodu. W terenie można także instalować automatyczne czujniki ultradźwiękowe, podobne w konstrukcji do czujników parkowania w samochodach, które zawieszone nieruchomo nad lodem mierzą swoją odległość od powierzchni. Można również wykorzystywać technologię GPS do systematycznych pomiarów wysokości punktów kontrolnych na lodowcu. Jeszcze inna metoda zaprzęga do pracy automatyczne stacje pogodowe, które zbierają dane o ilości energii docierającej do lodu i umożliwiają obliczanie topnienia w oparciu o równania fizyczne.

Metody badań zdalnych są niemniej rozmaite, a ich największą zaletą jest to, że nie wymagają bezpośrednich wizyt na lodowcach, dzięki czemu umożliwiają obserwacje miejsc trudno dostępnych oraz większej grupy lodowców. Wykorzystuje się w tym celu satelity i samoloty, których najważniejszym zadaniem jest dostarczanie zdjęć w różnych przedziałach promieniowania. Analiza zdjęć lodowców z różnych okresów pozwala na tworzenie map zmian zasięgu, a w pewnych sytuacjach także grubości lodowców, oraz pozwala na automatyczne wyznaczanie cech ich powierzchni, np. obecności śniegu. Flota może być także wyposażona w lasery lub radary do monitorowania zmian wysokości powierzchni, a jeszcze inna metoda obserwacji zmian masy opiera się na pomiarach anomalii grawitacyjnych, bo gdy lodu ubywa, tym słabsza jest grawitacja nad danym obszarem. W końcu, mamy także metody, które zaliczyłbym do mieszanych, np. obserwacje wykonywane z dronów lub fotogrametrię naziemną, czyli coś, co można obrazowo opisać jako fotograficzną geodezję. Techniki te wymagają co prawda wyprawy w teren, ale nie wymagają już wejścia na lód i korzystają z metod obróbki danych charakterystycznych dla grupy badań zdalnych. Paletę tę uzupełniają także symulacje komputerowe, które podparte są bezpośrednimi badaniami terenowymi do ich kalibracji.

Najcenniejsze w glacjologii są badania oparte na dwóch lub większej liczbie metod, bo każda z nich ma swoje wady i zalety i nie ma metod niezawodnych. Najważniejsze jednak jest to, że niezależnie od wykorzystanej techniki pomiarowej, wyniki dają spójny obraz - lodowce na niemal całym świecie tracą masę i jest to argument, którego nie da się obalić.

Przydatny link:

https://glacjoblogia.wordpress.com/2014/07/22/skad-wiemy-ze-lodu-ubywa/

Jakie są najbardziej fascynujące zjawiska związane z pokrywą lodową i aktywnością lodowców?

Pamiętając o tym, że lodowce są w bezustannym ruchu i mają swój charakter, łatwiej jest wyobrazić sobie, że niektóre z nich mogą mieć swoje "widzi-mi-się" i zachowywać się zupełnie niespodziewanie. Dwa podobne, sąsiadujące ze sobą lodowce mogą czasami reagować zupełnie inaczej na te same bodźce klimatyczne, a wszelkie anomalie są czymś co naukowcy uwielbiają. Spośród wielu tajemniczych zachowań osobiście najbardziej fascynują mnie tzw. szarże. Proszę wyobrazić sobie ślimaczący się przez dekady lodowiec, przesuwający się zaledwie o kilka metrów rocznie, który w regularnych odstępach czasu nagle przyspiesza swój ruch, np. stukrotnie, i po latach wycofywania swojego czoła nagle awansuje o kilometr lub dziesięć. Wciąż nie do końca rozumiemy mechanizmy sterujące szarżami, ale przyczyn tego zjawiska upatrujemy w procesach hydrologicznych zachodzących pod lodem. Mimo wielu lat badań, wciąż sporo pozostaje do wyjaśnienia.

Przydatny link:

https://glacjoblogia.wordpress.com/2018/01/24/o-szalonych-szarzujacych-lodowcach/

Czy globalne ocieplenie topiąc pokrywę lodową wielu rozsianych po świecie wulkanów może spowodować ich przebudzenie?

Zlodowacone wulkany występują przede wszystkim dookoła Pacyfiku, np. w Kordylierach, Andach i na Kamczatce, ale także m.in. na Islandii i wyspach antarktycznych. Wraz z zanikiem ich pokryw lodowych stopniowo coraz rzadziej będzie dochodziło do interakcji lodu z ogniem. To jest dobra wiadomość, bo kontakt tych dwóch żywiołów zawsze może skutkować niekontrolowanymi konsekwencjami. Ale to tylko jedna strona medalu.

Niestety, nie mamy zbyt wielu twardych danych o tym jak zachowają się w przyszłości wulkany w przypadku zaniku pokrywających je lodowców. Wiemy natomiast, że po ustąpieniu poprzednich zlodowaceń wulkany wykazywały wzmożoną aktywność, co tłumaczy się ich odciążeniem od przygniatających je milionów ton lodu. A więc faktycznie, istnieje prawdopodobieństwo częstszych i silniejszych erupcji wraz z zanikiem lodowców, ale zagadnienie to wymaga dalszych badań.

Dodatkowo, zanikające śnieg i lód odsłonią wulkaniczne stoki zbudowane z luźnych okruchów skalnych i popiołu. Taki rodzaj materiału może być bardzo niestabilny podczas deszczowych dni, bo daje się łatwo porwać przez spływającą wodę. Z tego powodu może dochodzić do częstszych niż obecnie spływów gruzowo-błotnych, katastrofalnych w skutkach dla osad i infrastruktury położonej u stóp wulkanu. Zmiany klimatu niosą więc ze sobą nowe zagrożenia, nie tylko związane z pogodą i wzrostem poziomu morza, ale, jak widać, także z aktywnością wulkaniczną. Przykład ten podkreśla, że wszystkie elementy systemu przyrodniczego Ziemi są ze sobą powiązane.

W jaki sposób przebiega interakcja lodu z emitowaną przez wulkan w trakcie erupcji lawą?

W zależności od tego w jakiej części lodowca dochodzi do kontaktu z lawą, efekt może być różny. W sytuacji, gdy lawa spływa na lód mogą powstawać wielkie ilości pary i wody roztopowej, a strumień lawy wcinać się może coraz głębiej w lodowiec, jak gorący nóż w masło, i może go dosłownie przeciąć, jeżeli lód jest wystarczająco cienki. Bardziej niebezpieczne są jednak sytuacje, gdy lawa zaczyna topić lodowiec od spodu, bo powstająca w ten sposób woda roztopowa nie ma łatwej drogi ewakuacyjnej i szybko się gromadzi na kontakcie lodu z podłożem, co powszechne jest np. na Islandii. Ciśnienie wody rośnie na tyle, że cały lodowiec zaczyna się wyraźnie podnosić, np. o kilka metrów. W końcu, po przekroczeniu punktu krytycznego lodowiec odkleja się od podłoża, a działająca jak smar woda pod ciśnieniem jest wtryskiwana pod lód na znacznej powierzchni. Cały lodowiec wyraźnie przyspiesza i gwałtownie wypuszcza nagromadzoną wcześniej wodę. W ten sposób dochodzi do ogromnych powodzi, zwanych z języka islandzkiego jökulhlaup, które przekształcają zwykłe potoki w pędzące błotniste rzeki, mogące zmiatać z powierzchni Ziemi domy, mosty i drogi.

Ale nie zawsze musi do tego dochodzić. Aktywność wulkaniczna może produkować pod lodowcami wystarczającą ilość ciepła, aby tylko przyspieszyć ich ruch, bez powodowania powodzi, i w ten sposób wymuszać awans ich czoła, nawet pomimo ocieplenia klimatu. Takie zachowanie obserwujemy w ostatnich dekadach np. na lodowcach pokrywających niektóre wulkany Kamczatki. Wszystko zależy więc od lokalnych czynników.

Przydatny link:

https://glacjoblogia.wordpress.com/2018/07/04/piesn-lodu-i-ognia-o-kamczackich-lodowcach-ktorych-nie-widac/

Czego może się spodziewać osoba, która po raz pierwszy zawita na norweski archipelag Svalbard? Jak wygląda życie/ codzienność glacjologa na Spitsbergenie?

Pierwszy kontakt z arktyczną przyrodą, z dala od miasteczka i lotniska, to wyjątkowa chwila. Człowiek pozbawiony dobrodziejstw cywilizacji, takich jak drogi, woda w kranie czy zasięg telefonii komórkowej, zdaje sobie wtedy sprawę, że przyjdzie mu pochylić głowę przed kaprysami natury. Cisza, mącona jedynie przez mewy i szum wiatru, daje poczucie wyobcowania, bo tak bardzo jesteśmy przyzwyczajeni do zgiełku i hałasu. Zwielokrotnienie wysiłku przy wykonywaniu podstawowych czynności, począwszy od dotarcia z punktu A do punktu B w trudnym terenie, po zwykłe zmywanie naczyń przy braku ciepłej, bieżącej wody, kształtuje charakter i uczy pokory.

Na Stacji Polarnej UAM na Spitsbergenie mamy oczywiście względne wygody, choć wiele osób nazwałoby te warunki spartańskimi. Mamy trzy domki, w tym dwa ogrzewane piecykami na drewno, i dziesięć łóżek. Agregat daje nam wieczorem kilka godzin prądu, więc można ładować komputery i aparaty, oglądać filmy i upiec chleb w piekarniku. Wąż ogrodowy wsadzony do strumyka daje nam wodę zaledwie kilka metrów od domków. To wystarcza do spędzenia tam niezapomnianych dwóch czy trzech miesięcy. Zaskoczeniem dla wielu może być fakt, że latem na Spitsbergenie nie ma ani mrozów, ani śniegu (oczywiście wykluczając góry i lodowce), a pogoda przypomina nasz polski listopad, choć z silniejszym wiatrem.

Mój typowy dzień na Stacji zaczyna się od śniadania o godzinie 9:00, które przygotowuje dyżurny. Po śniadaniu przygotowuję się do wyjścia na nasz testowy lodowiec i kilkukrotnie upewniam się, że mam wszystko, co będzie potrzebne, np. radio, scyzoryk, raki, dodatkową odzież, prowiant, notatnik i inne akcesoria. Obowiązkowo w teren chodzimy przynajmniej parami oraz z ostrą bronią – na wypadek spotkania niedźwiedzia polarnego, których na Spitsbergenie jest wiele. Bazę opuszczamy około południa, a po dwóch godzinach marszu jesteśmy u czoła lodowca. Spędzamy na nim z reguły kilka godzin, wykonujemy niezbędne pomiary (np. topnienia na tyczkach), prace konserwacyjne (np. stacji meteorologicznych) i dobrze się bawimy. Staramy się wrócić na Stację na ciepły posiłek w porze kolacji ok. 20:00, po której wspólnie oglądamy filmy rzucane z projektora na ścianę mesy. Takie życie daje wiele radości, satysfakcji i poczucie celu, więc zachęcam wszystkich młodych miłośników przyrody i aktywności na świeżym powietrzu, aby do nas dołączyli na geo-wydziale i Stacji Polarnej UAM!

Na zdjęciach (autor: Boaworm, Wikimedia Commons) interakcja lawy z lodem w trakcie erupcji drugiej szczeliny na Fimmvörðuháls, wulkan Eyjafjallajökull, Islandia, 2 kwietnia 2010 roku oraz Polska Stacja Polarna Hornsund (zdj. Adam Nawrot).

2 grudnia w godzinach 5:09, 9:22 i 15:45 trzy eksplozje meksykańskiego wulkanu Popocatepetl wygenerowały obłoki erupcyjne o wysokości 2.5 km.

Brak komentarzy:

Prześlij komentarz